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Deep-water internal solitary waves 
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An experimental investigation of mode-2 (‘lump-like’) solitary waves propagating on 
a thin interface between two deep layers of different densities is presented. Small- 
and large-amplitude waves behaved differently: small waves carried energy and 
momentum, whereas sufficiently large waves also carried mass. Weakly nonlinear 
theory anticipated the results for amplitudes a / h  < 0.5 but did not provide even a 
qualitative description of the large-amplitude waves. In particular, the prediction that 
for waves to maintain permanent form their wavelength must decrease with increasing 
amplitude failed; instead the wavelength of large waves was observed to increase with 
increasing amplitude. Furthermore, whilst the waves were expected to emerge from 
interactions along their precollision trajectories, the large waves actually suffered a 
backward shift. 

1. Introduction 
Solitary waves have been of interest since Russell (1837) first observed a surface 

water wave of finite amplitude and permanent form. This classical solitary wave 
propagates on the free surface of a shallow homogeneous fluid of constant depth. 
The permanent form is due to a balance between dispersion and nonlinearity. Linear 
theory predicts that infinitesimal shallow-water waves have phase speeds cg( 1 - Pk2)  
where k = 271/)3. is the wavenumber, 1 is the wavelength, co is the long-wave ( k  << 1) 
speed and /? is a positive constant. Hence long waves travel fastest. Conversely, if 
dispersion is ignored, then weakly nonlinear theory predicts phase speeds proportional 
to local vertical displacement. Hence long waves travel slowest. Thus a balance 
between dispersion and nonlinearity is possible for waves that are long compared to 
the fluid depth. 

Recent interest has centred on solitary waves propagating in density-stratified fluids 
and it is now clear that dispersion and nonlinearity balance for waves that are long 
compared to either the total fluid depth or the depth over which the fluid density 
varies. These internal solitary waves can be excited by tropical sea-breeze fronts and 
mid-latitude cold fronts in the atmosphere (Christie 1992) and tidal flows over bottom 
topography in the ocean (Ostrovsky & Stepanyants 1989). Indeed, Maxworthy (1980) 
noted that “quite general and uncontrolled mixing events create internal solitary 
wave trains [and this] leads us to suspect that they should be excited under many 
circumstances in natural systems”. 
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This study considers long deep-water internal solitary waves, that is, waves with 
wavelengths much smaller than the total fluid depth but much greater than the 
depth over which the fluid density varies. Such waves can, for example, propagate 
on a shallow fluid layer lying above or below a deep layer as well as on a thin 
pycnocline between two deep layers. A stunning example is the ‘morning glory’ roll 
cloud phenomenon observed on the atmospheric nocturnal inversion over northern 
Australia. These waves are often large enough to trap moisture and studies following 
the pioneering work of Christie, Muirhead & Hales (1978) indicate that they play 
an important role in the transfer of energy, mass and momentum as well as the 
generation and organization of turbulence in the lower atmosphere. Similar waves 
occur on the ocean thermocline excited by flow over a sill (Farmer & Smith 1980). 

Small-amplitude deep-water waves have open streamlines and are well described 
by weakly nonlinear theory (Benjamin 1967; Davis & Acrivos 1967), whereas at large 
amplitudes the waves contain fluid trapped within closed streamlines and the approx- 
imate analytic results fail. To provide a quantitative understanding of waves with 
recirculating regions, Tung, Chan & Kubota (1982) computed numerical solutions to 
the fully nonlinear equation governing steady waves of arbitrary amplitude in inviscid 
fluids. Although deep-water waves were considered, the focus was on shallow-water 
waves, and thus the theoretical and experimental basis on which to interpret field 
observations of large-amplitude deep-water waves remains limited. This investigation 
uses laboratory experiments to extend our understanding of deep-water waves. 

In each experiment a single large-amplitude wave was generated by displacing a 
paddle in a diffused interface between two deep layers of different densities. As 
the wave propagated, fluid was entrained into, mixed and then ejected from its 
recirculating region. Thus the waves not only transported fluid over large distances 
but also promoted localized mixing. As energy was dissipated, waves decreased 
in amplitude and eventually became too small to trap fluid. The wavelength of 
the large waves increased linearly with increasing amplitude and hence the wave 
profile only vaned by a scaling factor. This self-scaling behaviour also occurs for 
solitary waves on the interface between two unbounded fluids of different densities 
(Pullin & Grimshaw 1988), and differs from the prediction of weakly nonlinear theory 
that for waves to maintain permanent form their wavelength must be smaller for larger 
amplitudes. However, whilst the wavelength-amplitude scaling was qualitatively 
different for small- and large-amplitude waves, the wavespeed was an insensitive 
measure of wave behaviour, increasing linearly with increasing amplitude for all 
waves. The rate of amplitude attenuation was also independent of amplitude, with 
dissipation occurring through viscous stresses, turbulent mixing and, possibly, wave 
radiation. 

Experiments were also conducted to investigate wave-boundary and wave-wave 
interactions. At small amplitudes waves emerged from reflections against a solid 
vertical boundary unchanged and along their precollision trajectories, whereas at large 
amplitudes the reflected wave was smaller and slower than the incident wave and 
suffered a backward shift. The head-on collision between waves of equal amplitude 
was similar to a reflection, with the fluid trapped within each wave reversing direction 
and being transported away from the collision along the path by which it approached. 
For waves of different amplitudes this behaviour was modified by the exchange of fluid 
from the larger incident wave to the smaller incident wave such that the leftward and 
rightward propagating waves had the same amplitudes before and after the collision. 

The structure of this paper is as follows. Section 2 outlines internal solitary wave 
theory and then reviews previous work on deep-water waves. The experiments are 
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described in 33, with observations and measurements of isolated and interacting 
waves presented in $54 and 5 respectively. Section 6 summarizes the results and 
details several unresolved issues. 

2. Review of the literature 
It is convenient to classify internal solitary waves as ‘shallow-water’ waves. ‘deep- 

water’ waves or ‘finite-depth‘ waves depending on the relative magnitudes of the total 
fluid depth, the depth of the stratification and the wavelength. These classes of waves 
are briefly discussed and then a detailed review of deep-water waves is presented. 

2.1. Overview of internal solitary wave theory 

Theoretical work on internal solitary waves was initiated by Keulegan (1953) and 
Long (1956), who showed that such waves can propagate on the interface between 
two fluids of different densities. Following this, Benney (1966) and Benjamin (1966) 
derived the evolution equation governing solitary waves of small-but-finite amplitudes, 
with wavelengths much greater than the total fluid depth, propagating in continuously 
stratified fluids where the depth of the stratification is similar to the total fluid depth. 
These waves are called shallow-water waves, for which the principal assumptions 
are 

i / H  >> 1 and h / H  = 0(1), (2.1) 
where 2H is the total fluid depth and 2h is the depth of the stratification. For 
a balance between dispersion and nonlinearity the wavelength-amplitude scaling 
is 

where a is the amplitude. 
The extension of shallow-water theory to account for waves propagating on a thin 

pycnocline in an unbounded fluid was presented by Benjamin (1967) and Davis & 
Acrivos (1967). These waves are called deep-water waves and have wavelengths which 
are much smaller than the total fluid depth but much greater than the depth of the 
stratification: 

For a balance between dispersion and nonlinearity the wavelength-amplitude scaling 
is 

( A / H ) 2  = O(a/H)-’,  (2.2) 

% / H - 0  and i / h >  1. (2.3) 

%/h = O(a/h)-’. (2.4) 
Joseph (1977) and Kubota, KO & Dobbs (1978) extended the shallow- and deep- 

water theories to account for waves of small-but-finite amplitudes propagating in 
fluids which are neither shallow nor deep, but in which the total fluid depth is much 
greater than the depth of the stratification. These waves are called finite-depth waves 
and have wavelengths which are much greater than the depth of the stratification: 

h / H  << 1 and i / h >  1. (2.5) 
Differences between these classes of waves are due to differences in dispersion. The 

phase speeds of long shallow- and deep-water waves are ~ ( 1 -  p k 2 )  and co( 1 - y 1 k I) 
respectively, where y is a positive constant. Comparing these expressions indicates 
that for shallow- and deep-water waves with identical 1/H, A/h ratios the deep-water 
waves must be more nonlinear in order to propagate with permanent form. In turn, 
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finite-depth waves have phase speeds with a transcendental wavenumber dependence, 

that reduces to the shallow-water relation in the limit kH << 1 (i.e. kcoth(kH) -+ k 2 )  
and the deep-water relation in the limit kH -+ co (ie. k coth(kH) -+I k I). 

2.2. Deep-water internal solitary waves 
In contrast to the vast number of studies of shallow-water waves, there have been 
few studies of deep-water waves. Theoretical studies have focused on the mathemat- 
ically amenable problem of steady waves of small-but-finite amplitudes propagating 
in weakly stratified inviscid fluids. As computational power has increased, time- 
dependent, arbitrary amplitude and dissipative flows have been investigated numeri- 
cally. However, to illustrate the principal theoretical results, it is sufficient to consider 
steady waves. 

Dubreil-Jacotin (1937) and Long (1953) showed that steady two-dimensional mo- 
tions of an incompressible inviscid stratified fluid are governed by the conservation 
of vorticity equation 

where (x, z )  are the horizontal and vertical coordinates, V2 = d2/dx2 + d2/dz2 is the 
Laplacian operator, ~ ( x ,  z )  is the two-dimensional streamfunction, p(x ,  z )  is the fluid 
density, g is the gravitational acceleration and Zm(w) is a function determined by 
the upstream conditions. This equation can be used to consider the steady motions 
associated with a wave propagating at constant velocity c through a stationary 
environment by employing a coordinate system which moves with the wave. In this 
reference frame there is a uniform flow upstream and thus 

To simplify the analysis the following non-dimensional variables are introduced : 

% = x / h ,  z " = z / h  and tjj = y / ( c h ) ,  (2.9) 

(2.10) 

and the stratification expressed as 

P(Y) = P P  - D,9-(@)1, 

where hereinafter denotes a vertically averaged quantity, D is the non-dimensional 
density difference and F(@,) is an arbitrary monotonically increasing function. Fur- 
thermore, to focus on the deviations from the uniform flow, the perturbation stream- 
function $(%,Z) is used 

By substitution it can be shown that the governing equation may be rewritten as 
q=$++.  (2.11) 

V2$ + A (5) $ = -1 (3) (& + 6: + 2&), (2.12) 
1 - D F  2 1 - G F  

where the subscripts indicate derivatives and 

A-1 c2/agh = c2/2c;. (2.13) 
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In general, the Boussinesq approximation, which neglects density variations in the 
inertial terms of the equations of motion, is applied and the Dubreil-Jacotin-Long 
equation reduces to 

v2$ + A&($ + 5)$ = 0. (2.14) 

This approximation must be used with caution however. For example, Long (1965) 
and Benjamin (1966) found weakly nonlinear shallow-water waves that are extin- 
guished in the Boussinesq limit. In addition, for stratifications with a buoyancy 
frequency which is symmetric about the centre of the fluid layer, 9, (y )  = F,J-y), 
applying the Boussinesq approximation restricts the analysis to antisymmetric waves, 
i.e. $(-z) = -4(z). Despite these problems, (2.14) has been used in almost all 
theoretical investigations. 

Although simplified, the Boussinesq form of the governing equation remains non- 
linear and thus Davis & Acrivos first sought approximate analytic results for waves 
of small-but-finite amplitudes. Following the approach used for shallow-water waves, 
they expanded the streamfunction and wavespeed in powers of the amplitude 

2 
$ = ( f )  $(’)+ (9) $ ( 2 ) + . . .  and A =A( ’ )+  (2.15) 

h 
and then enforced the deep-water wavelength-amplitude scaling (2.4) by setting the 
x-derivatives to be O(a/h)  smaller than the y-derivatives. Ignoring terms of O ( a / q 3  
then allowed weakly nonlinear solutions to be found for two layers of different density 
separated by a thin constant-gradient region and for a continuous stratification of 
the form 

p(z) = p [ 1  - (Ap/2p) tanh(z/h)]. (2.16) 
For this latter stratification the wavespeed increased with increasing amplitude 

C/CO = 1 + 0.3(a/h) + O ( ~ / / I ) ~ .  (2.17) 

This result was independently derived by Benjamin (1967), who also showed that 
waves have Lorentzian profiles 

4 = aA2/(x2 + n2) (2.18) 

and that for the tanh(z/h) stratification the exact wavelength- amplitude scaling is 

,I = 5/2a. (2.19) 

In addition to finding the exact solution for steady waves, Benjamin derived the 
equation governing unsteady waves by modifying the dispersion term in the shallow- 
water evolution equation to that appropriate for long infinitesimal deep-water waves. 

The existence of such waves was confirmed experimentally by Davis & Acrivos, 
who showed that they form when a small quantity of neutrally buoyant fluid is 
injected into a slightly diffused density interface between two deep fluids of different 
densities. Two types of waves are observed. First, there are ‘small-amplitude’ waves 
characterized by open streamlines, fluid particle velocities less than the wave speed 
and behaviour similar to that predicted by the weakly nonlinear theory. These 
waves propagate with only gradual amplitude attenuation, reflect off solid vertical 
boundaries without apparent energy loss and two such waves travelling in opposite 
directions pass through each other unchanged. Second, there are ‘large-amplitude’ 
waves characterized by a region of fluid trapped within closed streamlines, fluid 
particle velocities approximately equal to the wavespeed and behaviour qualitatively 
different from that of the small-amplitude waves. Subsequently, Maxworthy (1980) 
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* 25 cm----- 
e 180 cm c 

FIGURE 1. Experimental setup. Large-amplitude mode-2 waves were generated by smoothly 
displacing the paddle along the interface and then bringing it to rest between the two baffles. 

showed that a train of large-amplitude waves can form from quite general forcing 
mechanisms when the appropriate environmental conditions exist. The waves are 
ordered according to amplitude, with the large fast waves leading the small slow 
waves, and the recirculating region of each wave consists of two counter-rotating 
cells. 

To extend their approximate analytic results, Davis & Acrivos computed numerical 
solutions for waves on a thin constant-gradient region separating two deep layers 
of different densities and found that for amplitudes a/h  > 1.2 the central streamline 
bifurcates, trapping fluid within closed streamlines. Although the flow field and 
wavespeeds computed for these waves were consistent with those of experiments, the 
analysis was invalidated by the presence of streamlines unconnected to the upstream 
flow. Furthermore, the usefulness of inviscid solutions is questionable because the 
diffusion of vorticity plays an important role in the dynamics of flows within closed 
streamline regions (Batchelor 1956). However, Tung et al. (1982) argued that such 
solutions are valid for times long enough that transient behaviour is negligible but 
short enough that viscosity is unimportant, and then computed solutions for large- 
amplitude waves on a tanh(z/h) stratification. Their focus was on shallow- rather than 
deep-water waves, although it was shown that for practical purposes the deep-water 
regime occurs for H / h  >, 40. 

3. Description of the experiments 
This investigation uses laboratory experiments to extend our understanding of deep- 

water waves with recirculating regions and thereby avoids the problems encountered 
in modelling efforts. A description of the experimental methods is presented in this 
section. 

3.1. Apparatus and procedure 
The experiments were carried out in a glass channel of horizontal cross-section 
L x w = 180 x 15 cm (figure 1). A continuously stratified fluid was formed by floating 
a layer of fresh water on top of a layer of salt water through two diffusers and 
letting the interface produced thicken by diffusion. The salt water was easily adjusted 
to the desired density, and the layer depths were chosen to be as large as possible, 
H = 14 cm, to ensure that the waves generated were deep-water waves. The filling 
procedure took about 20 minutes. Then the diffusers were removed, leaving a free 
upper surface, and the interface allowed to thicken for a further 10 minutes. 

At the end of this time the density stratification was examined by traversing 
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Density relative to fresh water, p(z)-0.9982 (gm ~rn-~) 

FIGURE 2. Experimental (0 )  and theoretical (- ) density stratifications. The experimental 
stratification was formed by allowing the interface between fresh and salt water layers to thicken 
by diffusion. 

a four-wire conductivity probe (Precision Measurement Engineering, USA, Model 
MSCI-PME 106-300E) and fast-response glass thermistor (Fenwal Electronics, USA, 
Model 0.070 inch diameter) through the interface. The measured conductivities were 
normalized to 20 "C by assuming a 2.25% change per degree Celsius, and Weast's 
(1975) data used to calculate the densities at 20 "C. In all experiments the measured 
stratifications were well described by the tanh(z/h) profile used in theoretical work, 
with a characteristic depth of about 2.5 mm (figure 2). Thus the ratio of the total 
fluid depth to the depth of the stratification was about H / h  = 50, which is within the 
deep-water regime (Tung et al.). 

For a more accurate measure of the density difference across the interface, samples 
were withdrawn from the centre of both layers and their density at 20.00 f 0.01 "C 
measured to f 7  x lop5 gm using a digital densimeter (Anton Paar, K. G. Austria, 
Model DMA 02C). 

The setup used to generate large-amplitude mode-2 waves (lowest-order varicose 
mode) is shown in figure 1. A paddle of depth 7 cm, which extended across the 
channel and was centred on the interface, was smoothly displaced along the interface. 
Interfacial fluid became trapped against the moving paddle and when the paddle 
was brought to rest between two polystyrene baffles this fluid slumped into the main 
chamber of the channel forming a large-amplitude solitary wave. The baffles prevented 
the intermediate-density fluid created by mixing behind the paddle from entering the 
main chamber of the channel and interacting with the wave. However, in response to 
the injection of fluid into the main chamber of the channel, fluid flowed over the upper 
baffle and back into the generation chamber until both chambers equilibrated to equal 
depths. This generation technique was used because it consistently produced a single 
large-amplitude wave rather than several amplitude-ordered waves. Furthermore, the 
position and number of paddles was easily changed thereby allowing wave-boundary 
and wave-wave interactions to be simply set up. 

3.2. FEow visualization 
Several flow visualization techniques were employed and all experiments were recorded 
on video for subsequent analysis. 
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c - 

FIGURE 3. Definitions of amplitude (a) and wavelength (A) for mode-2 waves. The amplitude was 
defined as the maximum displacement of the y = +h streamlines and the wavelength as the forward 
half-width at half-maximum of these streamlines. Note that the thickness of the interface behind 
the wave (2h.) was larger than that ahead of the wave (2h)  due to the wave-induced mixing. 

To determine the position, amplitude and wavelength of the waves, coloured water- 
insoluble droplets of different densities were injected into the fluid. Spread out 
along the channel, these droplets marked surfaces of constant density and thus the 
streamlines of the flow (figure 4). Mixtures were made to within +0.0005 g r n ~ m - ~  of 
the desired densities from heptane ( p  = 0.6840 g m ~ m - ~  at 20 "C), 1-bromopentane 
( p  = 1.2237 g m ~ m - ~  at 20 "C) and Sudan 3 dye. These chemicals were chosen 
for their insolubility in water, suitable densities and relative non-toxicity. Injecting 
the mixtures into the fluid with a fine-gauge hypodermic needle placed below the 
free surface then produced droplets of < 0.25 mm diameter. In all experiments the 
surfaces of constant density corresponding to z = f h  in the tanh(z/h) profile were 
marked to allow the depth of the stratification and, as discussed in 93.3, the wave 
properties to be measured. 

Qualitative observations of the motion within the recirculating region of large- 
amplitude waves were made by injecting dye, mixed with salt water so as to be 
neutrally buoyant, into the centre of the interface (figure 5a). The dyed fluid had 
similar properties to the undyed fluid and was usually placed between the paddle and 
baffles so as to be entrained while the wave formed. In some experiments however, 
dye was placed in the main chamber of the channel to investigate entrainment into a 
fully formed wave and the centre of the interface was also marked with droplets. 

3.3. Definition and measurement of wave properties 

Measurements of amplitude and wavelength were made in accordance with the 
definitions employed in weakly nonlinear theory (Benjamin 1967; Davis & Acrivos 
1967). Figure 3 illustrates these definitions and the general nature of the large- 
amplitude waves. 

The amplitude was defined as the maximum displacement of the y = +h streamlines 

(3.1) 

and was measured using dyed water-insoluble droplets which were neutrally buoyant 
at z = fh .  

The wavelength was defined as the half-width at the height where the amplitude, as 
defined by the y = f h  streamlines, was half its maximum value. However, the large- 
amplitude waves generated in the laboratory were followed by a mode-1 (oscillatory) 
wave and mixed the density stratification, and therefore did not exhibit the fore-aft 

a =I W(fh)  lmax 4 7  
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Symbol pi v , / v ,  a h h. ZmUx/h -da/dX RQ, Re,, 
A 1.0501 1.05 0.0253 2.25 3.00 3.1 0.0037 36.2 2416 
[7 1.1099 1.20 0.0485 2.75 3.25 2.5 0.0031 65.4 3567 
0 1.1500 1.40 0.0707 2.50 2.90 3.1 0.0029 65.5 3931 
X 1.1997 1.65 0.0917 2.50 3.00 2.9 0.0025 70.7 4243 

TABLE 1. Experimental parameters and results for isolated waves. The iist includes: the lower-layer 
density ( P I ;  gm ~ m - ~ ) ,  the ratio of layer viscosities ( v , / v , , ) ,  the non-dimensional density difference (g), 
the characteristic depth of the interface before (h ;  mm) and after (h.  ; mm) the passage of the wave, 
the maximum non-dimensional amplitude (umUx/h), the rate of amplitude attenuation (-dsi/dX), 
and the Reynolds numbers characterizing viscous dissipation within the interface (Re,,) and at the 
sidewalls (Re,) .  In each experiment the layer depths were both H = 14 cm and the density of the 
fresh upper layer was pu = 0.9982 gm crn-l. 

symmetry of theoretical profiles. Thus wavelength measurements were restricted to 
the forward portion of the wave and the depth of the undisturbed interface ahead of 
the wave used for non-dimensionalizations. 

Measurements of time, amplitude and wavelength were made every 5 cm. The 
wave position was defined as the position of maximum displacement of the y = +h 
streamlines, that is, the position of maximum amplitude. To account for asymmetry 
about the centre of the interface both the upper and lower values of the amplitude 
and wavelength were measured. 

4. Propagation of isolated waves 
A number of preliminary experiments were carried out for familiarization with the 

wave generation technique and wave properties. Once the experimental procedure was 
refined, detailed observations and measurements were made of four isolated waves for 
which the lower-layer densities were pI = 1.0501, 1.1099, 1.1500 and 1.1997 grncmp3 
(table 1). Here the experimental results are presented and compared with theoretical 
predictions. 

4.1. Wave generation 
Isolated large-amplitude mode-2 waves were easily generated using the paddle tech- 
nique described in $3.1. As the paddle moved along the interface the interfacial fluid 
was displaced from its level of neutral buoyancy and, while most fluid was deflected 
above and below the paddle, some fluid became trapped against the paddle. When the 
paddle was brought to rest this trapped fluid slumped away under the restoring force 
of gravity and momentum imparted by the paddle. Figure 4 shows the subsequent 
behaviour. The front of the intrusion took the form of a stable solitary wave while 
at the rear of the intrusion fluid was ejected backwards through wave-breaking. In 
this manner, the intrusion quickly attained a distinct length and an isolated solitary 
wave emerged about 20 cm from the point at which the paddle was stopped. The 
fluid which was not incorporated into the wave formed a gravity current intrusion 
and was rapidly left behind. 

The largest waves were generated with an intermediate paddle speed, long paddle 
stroke and paddle which was deep compared to the characteristic depth of the 
interface. An appropriate paddle speed was determined by trial and error: at large 
speeds most of the fluid was deflected around the paddle, whereas at small speeds the 
trapped fluid collapsed away from the moving paddle. To allow for measurements 
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FIGURE 4. Wavc gcneration as visualized with dyed water-insoluble droplets marking surfaces of 
constant density. The paddle injected fluid into the interface which (a )  initially formed an intrusion 
with wave-breaking at the rear, but ( b )  seconds later the front of the intrusion had the form of a 
solitary wave. 

over the largest possible distance, the paddle stroke was chosen to be as short as 
possible, 25 cm, while still ensuring that the volume of trapped fluid was large. The 
paddle used was as large as possible, 7 cm deep, without being so large that the 
volume of fluid injected into the main chamber of the channel caused a disruptive 
return flow over the baffles. With this setup the initial dimensional amplitude of waves 
was consistently about 7.5 mm for interfaces of characteristic depths 2 < h d 5 mm. 
Thus the non-dimensional amplitude of waves was principally determined by the 
depth of the interface, and the observed maximum amplitude (a /h  = 3.75) was an 
artefact of the generation technique and interface characteristics, rather than an 
inherent property of the waves.? 

4.2. Experimental observations 
All waves decayed while propagating along the channel, and for large-amplitude 
waves this process was accompanied by a decrease in the size of the recirculat- 
ing region. In general, the waves traversed the channel twice before becoming too 
small to trap fluid and then continued back-and-forth several more times before 
becoming too small to observe. Figure 5 shows the same wave at large and small 
amplitudes. 

The large-amplitude waves had both laminar and turbulent regions: along the 
open streamlines the flow was laminar and fluid stratified, whereas within the closed 
streamline region the flow was turbulent and the fluid well-mixed. As observed in 
numerical solutions, the recirculating region consisted of upper and lower counter- 
rotating cells; however, there was no clear boundary separating the cells, and fluid was 

t Motivated by this study, Matthew Stocks (private communication) carried out additional 
experiments with the described apparatus and generated waves of amplitude a /h  = 5 by further 
reducing the depth of the interface. Similarly large waves were also generated on a thicker interface 
using a convergent channel. 
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FIGURE 5. The same wave as in figure 4 at (a) large and (b)  small amplitudes. In both frames the 
wave is propagating to the left, and the upper droplets (v = 11 streamline) are displaced further 
than the lower droplets (VI = -h streamline). The wave passed through a region of dyed interface 
and in (a)  entrained dye marks the trapped fluid. As energy was dissipated, the wave amplitude 
decreased, fluid was ejected from the recirculating region leaving a line of dye behind the wave, and 
eventually the wave became too small to trap fluid (b) .  

continuously entrained into and ejected from this region.? For example, when a wave 
passed through a region of dyed interface the dye mixed into the cells within several 
seconds only to be gradually ejected from the rear of the wave. The entrainment 
appeared to occur at the same rate at all points along the boundary enclosing the 
trapped fluid, and the rapid spread of dye through the cells was indicative of turbulent 
mixing. Furthermore, the rear of the wave was susceptible to shear instabilities, with 
smaller droplets occasionally being entrained there and carried for 1&100 cm before 
being ejected in a turbulent manner. Through this process of entraining, mixing and 
ejecting fluid the large-amplitude waves promoted localized mixing which increased 
the thickness of the interface, i.e. h, > h (table 1). 

A mode-1 wave closely followed each mode-2 solitary wave (figures 3 and 13). 
The amplitude of these waves was decreased by aligning the paddle with the centre 
of the interface and limiting the paddle speed, but they could not be eliminated. 
For the most carefully controlled experiments, the mode- 1 waves had amplitudes of 
1-5 mm, wavelengths of 1-5 cm and appeared to propagate with permanent form. 
This behaviour is consistent with the prediction of Akylas & Grimshaw (1992) that 
internal solitary waves of mode n > 1 develop oscillatory tails. However, it remains 
possible that the waves were an artefact of the generation technique or a manifestation 
of shear instabilities resulting from the ejection of fluid from the main wave. 

As seen in figure 5 ,  both small- and large-amplitude waves were asymmetric 
about the centre of the interface, i.e. 4(-z) # -4(z) .  Furthermore, the upper 
portion of the wave was occasionally slightly ahead of or behind the lower por- 
tion of the wave. Subsequent analysis indicates that in each experiment the upper 
amplitude, a, =I y(+h) l m a r  -h, was consistently greater than the lower amplitude, 

1- It is therefore more correct to describe the boundary of the recirculating region as an ‘inter- 
mittency surface’ (Townsend 1976) rather than a ‘closcd streamline’; however, given the historical 
precedent, such a change would be confusing and is avoided. 
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FIGURE 6. Measurements of the upper and lower values of the ( a )  amplitude and ( h )  wavelength 
as a wave traversed the channel. The dashed lines denote values for an antisymmetric wave, i.e. 
a, = UJ and I ,  = 11. In all experiments the upper amplitude was statistically greater than the lower 
amplitude, whereas the wavelengths were similar. 

a[ =) y(-/I) lmX -h, whereas the wavelengths were similar (figure 6) .  This asymmetry 
could have resulted from non-Boussinesq effects, the salty lower layer being more 
viscous than the fresh upper layer (table l), or having a free upper but fixed lower 
boundary. Indeed, the Dubreil-Jacotin-Long equation indicates that for density strat- 
ifications with a symmetric buoyancy frequency, such as the tanh(z/h) stratification, 
Boussinesq fluids support antisymmetric waves, whereas non-Boussinesq fluids sup- 
port asymmetric waves. However, experiments with different stratifications did not 
exhibit different wave profiles, and therefore non-Boussinesq or viscous effects do not 
appear to be the likely cause. Thus our preferred explanation is that the asymmetry 
was primarily due to the differing upper and lower boundary conditions. Whatever 
the case, the observed waves are similar to mode-1 waves on a slippery boundary layer 
waveguide, and the average amplitude, 4 and wavelength, values are employed in 
presenting further results. 

Finally, all motions were two-dimensional. The waves were aligned straight across 
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the channel, the sidewall boundary layers were too thin to observe and there were no 
noticeable motions along the wave-front. 

4.3. Wavelength-amplitude scaling 
Solitary waves are characterized in terms of their wavelength-amplitude scaling, and 
this relationship provides a simple accurate basis for comparing experimental results 
with theoretical predictions. 

In the experiments each wave was observed to first decrease in amplitude and wave- 
length while propagating along the channel; however, at some point the amplitude 
attenuation became accompanied by an increase in the wavelength. Thus the scaling 
of small and large waves was qualitatively different: at small amplitudes the wave- 
length decreased with increasing amplitude as predicted by weakly nonlinear theory, 
whereas at large amplitudes the wavelength increased with increasing amplitude. 

Measurements of wavelength and amplitude were made throughout each experi- 
ment to complement the experimental observations. However, measurement errors 
gave rise to poorly constrained wavelength estimates for small waves, and thus it was 
not possible to determine the functional form of the wavelength-amplitude scaling at 
small amplitudes. 

The wavelength and amplitude values are plotted in figure 7, and indicate that at 
large amplitudes the wavelength increased linearly with increasing amplitude 

x / h  = 0.95 + 2.1g/h for 1.0 d 5/11 d 3.1. (4.1) 

A value inferred from the H / h  = 40 streamfunction plots of Tung et al. is consistent 
with the measurements, and this suggests that the wave behaviour can be accounted 
for by higher-order amplitude terms without regard to viscous effects. Indeed, at 
large amplitudes the important dynamical balance must be between nonlinearity and 
dispersion, and thus viscosity may be important in dissipating energy but should not 
directly affect the wave scaling. 

An important outcome of this linear wavelength-amplitude relationship is that all 
waves of amplituiles a / h  2 1 are similar in shape and differ only by a scaling factor. 
This 'self-scaling' behaviour was also reported by Pullin & Grimshaw (1988) in their 
numerical investigation of solitary waves on an interface between two unbounded 
Boussinesq fluids; indeed, in this case the limiting wave scales as A -, 2.18a which 
is remarkably similar to that observed here. The reason for this behaviour remains 
unclear however, although the fact that the wave steepness, a/A, is constant and that 
the limiting two-fluid profile meets the interface at the Stokes angle of 120" suggests 
that it is related to wave stability. Whatever its origin, the self-scaling provides a basis 
for seeking analytical solutions and implies that the properties of all large-amplitude 
waves can be derived from a single numerical solution. 

4.4. Wavespeed 
Another important property of the waves is their speed of propagation. For each 
experiment the wavespeeds were calculated by taking the derivative of the third- 
degree polynomial that best fits the displacement-time measurements, i.e. dX(t)/dt 
where X(t) = A0 + Alt + A2t2 + A3t3. This procedure has two advantages over 
difference estimates, i.e. AX/At. First, the video unit only recorded time to +O.l and 
the curve fit smoothes the errors resulting from these quantized time measurements. 
Second, the derivation of an analytic expression for the wavespeed allows values 
to be conveniently calculated at positions where the amplitude is known. The two 
wavespeed estimates agree within expected uncertainties (figure 8a). 
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FIGURE 7. Wavelength us. amplitude. In addition to the measured values, the inverse relationship 
derived by Benjamin using weakly nonlinear theory (- - -) and a value inferred from the 
H / h  = 40 streamfunction computed by Tung et d. (m) are plotted. At large amplitudes the 
wavelength increased linearly with increasing amplitude, with the solid line being the best linear fit. 

In most studies wavespeed results have been expressed in terms of the eigenvalue 
of the Dubreil-Jacotin-Long equation A = 2ci/c2. Although the relationship relating 
the wavespeed to the eigenvalue is simple, this approach has led to confusion in the 
interpretation of results and thus here the wavespeeds themselves are presented. 

Figure 8(b) shows the wavespeed plotted against the amplitude, with Davis & 
Acrivos measurements included to extend the range of amplitudes. The wavespeed 
increased linearly with increasing amplitude according to 

c/co = 1.0 + 0.49Z/h for 0.1 d Z/h d 3.1. (4.2) 

The weakly nonlinear theory is accurate at small amplitudes, Z/h < 0.5; however, at 
large amplitudes the measurements are underestimated. In contrast, the H/h = 40 
numerical solution presented by Tung et al. is in excellent agreement with measure- 
ments over the entire range of amplitudes. Finally, given the qualitatively different 
wavelength-amplitude scaling of small- and large-amplitude waves, these results indi- 
cate that the wavespeed is an insensitive measure of wave behaviour. 

4.5. Amplitude attenuation 
All waves decayed while propagating along the channel, and to elucidate the at- 
tenuation process the wave amplitude is plotted against position in figure 9(a). In 
each experiment the amplitude decreased linearly with position, and thus the rate of 
attenuation was constant 

da 
d(X/h) - -dX = constant, d(a/h) 

(4.3) 

and calculated from the best linear fit to the measurements (table 1). The rates of 
attenuation are plotted in figure 9(b) and, despite the large errors, it is clear that 
attenuation was most rapid at small density differences. 

A linear decrease of amplitude with position is not characteristic of most water 
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a polynomial fit to the displacement-time measurements (~ ). The polynomial fit smoothes 
the errors resulting from quantized time measurements. (b)  Wavespeed us. amplitude. To extend 
the range of amplitudes, Davis & Acrivos’ measurements are included: P I  = 1.052 g m ~ m - ~  (A), 
pi = 1.095 (m) and PI  = 1.168 (0 ) .  For comparison, the prediction of weakly nonlinear the- 
ory (- - -) and the H / h  = 40 numerical solution of Tung et al. (......) are plotted. The 
wavespeed increased linearly with increasing amplitude, with the solid line being the best linear fit. 

waves. For example, both free surface waves (Lighthill 1978) and waves on an 
interface between two fluids of different densities (Koop & Butler 1981) attenuate 
more rapidly at large amplitudes than at small amplitudes, and thus exhibit an 
exponential decrease of amplitude with position. It is possible that similar behaviour 
occurs in the present situation but was not observed because of the limited range of 
amplitudes considered. However, here dissipation occurred through turbulent mixing 
and, possibly, wave radiation as well as viscous stresses, and this difference probably 
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with position, and thus the rate of attenuation (-da/dX) was independent of the amplitude. 

= 1.10 (- - -), 
pl = 1.15 (- - -) and pl = 1.20 (......) . (6) Attenuation rate us. density difference. Despite 
the large errors, it is clear that the most rapid attenuation occurred at small density differences. 

The best linear fit is plotted for each experiment: pl = 1.05 (- ), 

accounts for the observed behaviour. An attempt is now made to determine the 
relative importance of these three dissipation mechanisms. 

If viscous stresses were the dominant dissipation mechanism, then the rate of 
attenuation should depend on the Reynolds number: Re = U L / v  where U is the 
velocity scale, L is the length scale and v the kinematic viscosity. Here attenuation 
was independent of amplitude and therefore the Reynolds numbers characterizing 
the flow should also be independent of amplitude. Thus an appropriate velocity scale 
is the speed of long infinitesimal waves, and the length scales are taken to be the 
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characteristic depth of the interface for dissipation within the interface 

Reh = coh/v cc ( ~ g h ~ ) ” ’ / ~ ( ~ ,  

Re, = cow/v cc (agh)’/2w/v(ii), 

(4.4) 

(4.5) 

and the channel width for dissipation at the sidewalls 

where v ( p )  is the average viscosity of the two layers as calculated from Weast’s data. 
Values of the Reynolds numbers are listed in table 1. The change in the velocity scale 
caused by changes in the density difference dominate the associated changes in the 
viscosity, and thus both Reynolds numbers increase with increasing density difference. 
This result is consistent with the observation that the most rapid attenuation occurred 
at small density differences, and, as observed in the preliminary experiments, indicates 
that the rate of attenuation should decrease when either the characteristic depth of 
the interface or channel width increase. 

Large-amplitude waves entrained, mixed and then ejected fluid, and thus turbulent 
mixing occurred both within the recirculating region as well as between this region 
and the surrounding flow. This mixing affected wave attenuation in two ways. First, 
kinetic energy was extracted from the wave and used to increase the potential energy 
of the water column (table 1). Second, the wave experienced drag due to the loss of 
high-momentum fluid from its recirculating region. Whilst it is difficult to quantify 
these effects, the mixing itself appeared to result from shear instabilities and should 
therefore depend on the Richardson number Ri = gApL/p(AU)2. Again the velocity 
scale is taken to be the speed of long infinitesimal waves and the length scale to be the 
depth of the stratification. This approach produces a constant Richardson number 

R i  uc gAph/& = gAph/p(agh) = constant, (4.6) 

and thus changes in the interfacial density difference lead to changes in the stabilizing 
restoring force and destabilizing shear that balance. Therefore all waves should have 
had the same susceptibility to shear instabilities and, if turbulent mixing was the 
dominant dissipation mechanism, decayed at the same rate. Hence it appears that 
turbulent mixing cannot explain the observation that attenuation was most rapid at 
small density differences. 

As discussed in $4.2, a mode-1 wave followed each mode-2 wave, and these waves 
may have carried energy away from the main wave. Akylas & Grimshaw (1992) 
predicted the existence of such waves but were unable to calculate the resulting 
attenuation of the mode-2 wave. However, a crude estimate can be made by noting 
that the radiation of energy in an attached infinitesimal lee wave train is equal to 

dE 
- K W ( C - C g ) E  
dt (4.7) 

where cg = d(ck)/dk is the group velocity and .F the energy per unit area of the 
attached waves (Lighthill 1978). The energy of a large-amplitude mode-2 wave might 
be expected to vary as 

(4.8) 
where the first term is the kinetic energy contribution due to the bulk motion 
and the second term represents the potential energy and remaining kinetic energy 
contributions. Now, for infinitesimal waves on an interface between two unbounded 
fluids of different densities 

E K w;l(iiac2 + gApa’), 

c2 = ga/k,  cg = c/2 and e = gApt2/2, (4.9) 
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where 5 is the wave amplitude. 
wavespeed (4.2) and wavelength (4.1), and taking the limit a / h  >> 1 gives 
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Substituting, using the empirical relations for 

da h12 
dX a3 

(x - 2  
~ (4.10) 

where the chain rule has been used. Here the amplitude of the attached waves 
appeared to be constant, and this result therefore indicates that if wave radiation had 
been the dominant dissipation mechanism then the attenuation rate should depend 
on the amplitude itself. In practice however, the attenuation was independent of 
amplitude, and thus wave radiation does not appear to explain the experimental 
results. 

In summary, evidence for a linear decrease of amplitude with position is convincing, 
and observations indicate that dissipation occurred through viscous stresses, turbulent 
mixing and, possibly, wave-radiation. Attenuation was most rapid at small density 
differences. This trend is consistent with Reynolds number trends, whereas neither 
a Richardson number formulation of the turbulent mixing nor an estimate of the 
radiation of energy by the mode-1 waves predicts the observed behaviour. However, 
the theoretical approaches used in these estimates were rather crude, and further work 
is required before a complete understanding of the wave attenuation is attained. 

5. Wave-boundary and wave-wave interactions 
Since the discovery by Zabusky & Kruskal (1965) that solitary waves are stable 

and emerge from nonlinear interactions unchanged there has been much interest in 
interactions between solitary waves. Indeed, ‘solitons’ are now known to occur in 
numerous physical systems and illustrate how coherent behaviour can form out of 
chaotic conditions (Krumhansl 1991). 

Interactions between solitary water waves are of special interest because they are 
observed in various geophysical and technological settings, and are amenable to 
experimental as well as theoretical investigation. For example, to understand solitary 
Rossby waves in Jupiter’s atmosphere, Maxworthy (1976) and Weidman & Maxworthy 
(1978) carried out experimental investigations of head-on and overtaking collisions 
between solitary waves on the free surface of a shallow layer of fluid.t In both 
cases the waves suffered a phase shift, and the maximum wave amplitude attained 
during head-on collisions was greater than twice that of the incident waves. This 
behaviour was in qualitative agreement with weakly nonlinear theory; however, more 
detailed subsequent investigations have questioned whether the waves strictly behave 
as solitons (Fenton & Rienecker, 1982; Renouard, Seabra-Santos & Temperville, 
1985). 

More recently, Christie (1992) reported observations of collisions between southerly 
and northeasterly morning glory roll clouds, and suggested that similar collisions 
occur elsewhere between thunderstorm-generated solitary waves. As a first step 
towards understanding these interactions, experiments were carried out to determine 
the behaviour of deep-water solitary waves during reflection from a solid vertical 
boundary and head-on collisions. These interactions were simpler to set up than 
the observed oblique interactions, and attempts to set up overtaking collisions failed 
because the channel was too short. (A small slow wave ahead of a large fast wave 

t Some authors have followed Miles (1977) in using the adjectives ‘weak’ and ‘strong’ to distin- 
guish the short-time interactions of head-on collisions and the long-time interactions of overtaking 
collisions. 
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x h, h, (Th) ,  (Z/h/h)r (C/CO)l (C/CO)l -AX At 
80 2.25 2.50 2.2 1.9 2.2 1.7 7 0.3 
120 2.25 2.50 2.0 1.7 2.0 1.5 3 0.2 
155 2.75 3.25 1.0 0.8 1.5 1.2 4 0.4 

TABLE 2. Experimental parameters and results for wave-boundary interactions, where the subscripts i 
and r refer to the incident and reflected waves. The list includes: the distance travelled by each wave 
before reflection ( X  ; cm), the characteristic depth of the interface ( h ;  mm), the non-dimensional 
amplitude (Z/h) ,  the non-dimensional wavespeed (c/c0), and the spatial (-AX; mm) and tem- 
poral ( A t ;  s) phase shifts. In each experiment the layer depths were both H = 14 cm, the 
density of the lower layer was pl = 1.1000 gmcmP3 and the density of the fresh upper layer was 
pu = 0.9982 g m ~ m - ~ .  (The estimates of the spatial and temporal phase shifts are left as dimensional 
quantities because the increase in interface thickness during the passage of the incident wave results 
in differcnt length and time scales being appropriate to the incident and reflected waves.) 

was generated by stopping and then restarting the paddle.) Particular attention was 
given to large-amplitude waves because the atmospheric waves often have amplitudes 
comparable to the depth of the inversion layer. This approach also complements that 
of Matsuno ( I  979), who showed that in the weakly nonlinear limit mode-1 deep-water 
waves emerge from overtaking collisions along their precollision trajectories. 

5.1. Rejection from a solid vertical boundary 
To investigate the behaviour of waves during reflection from a solid vertical boundary 
the paddle was positioned so that waves propagated X = 80, 120 and 155 cm before 
reaching the channel endwall. Amplitude attenuation then ensured that the waves had 
different amplitudes at the endwall, although in each case the incident wave was large 
enough to contain fluid at the first reflection and the behaviour at small amplitude 
had to be determined from subsequent reflections (table 2). In all experiments the 
density of the lower layer was p~ = 1.1 g m ~ m - ~  and the density of the fresh upper 
layer was pu = 0.9982 gmcm-3. 

In all cases the reflection process began with the vertical deflection of streamlines 
and decrease in wavespeed, and culminated with the wave coming to rest against 
the endwall with an amplitude about twice that of the incident wave. Then the 
wave collapsed away from the endwall and appeared to recover its equilibrium 
profile after travelling about 20 cm. There were qualitative differences between the 
behaviour of small- and large-amplitude waves however: at small amplitudes there 
was no noticeable change in the wave, whereas at large amplitudes the reflected wave 
was smaller, and slower, than the incident wave (table 2). This decrease in amplitude 
occurred because fluid was ejected from the large-amplitude waves during the collapse 
away from the endwall, with, as during wave generation, this fluid forming a gravity 
current intrusion which was rapidly left behind (figure 10). It was not possible to 
determine whether the behaviour was sensitive to the amplitude of the incident wave, 
but the X = 155 cm wave suffered a much larger decrease in amplitude than the 
other waves. This anomalous behaviour probably occurred because on reaching the 
endwall this wave was only just large enough to contain fluid and it ejected all of this 
fluid during the reflection. 

Figure 1 l ( a )  shows the trajectory followed by the X = 80 cm wave during reflection. 
As indicated, extrapolating lines fitted to the incident and reflected trajectories suggests 
that the wave suffered a small negative spatial phase shift, that is, appeared to reflect 
from a virtual endwall behind the real endwall or, alternatively, hesitate at the endwall. 
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FIGURE 10. The X = 80 cm wave breaking and ejecting fluid as it reflects from the endwall. 

Estimates of the spatial (-AX) and temporal (A t )  phase shifts are listed in table 2, 
and figure l l ( b )  shows the spatial phase shift plotted against wave amplitude. A 
number of difficulties were encountered in deriving these estimates: the presence of 
the trailing oscillatory disturbance and the mixing of the density stratification by the 
incident wave both affected the reflected wave, and measurements had to be made far 
enough from the endwall to ensure that the wave was in equilibrium yet close enough 
to avoid significant amplitude attenuation. Nevertheless, evidence for phase shifts is 
convincing, with a statistical average of point estimates giving a non-zero value in 
the same direction as that suffered by solitary waves on the free surface of a shallow 
layer of fluid (Renouard et al. 1985). 

5.2. Head-on collision between two waves 
Several experiments were conducted to investigate the behaviour during head-on 
collisions between two waves propagating in opposite directions. Collisions between 
waves of equal amplitude were set up by displacing two paddles at the same time, 
whereas collisions between waves of different amplitudes were set up by displacing two 
paddles at different times. The distance that the waves propagated before colliding 
was varied but the channel was too short for a large range of amplitudes to be 
examined. Another problem was that it was difficult to make detailed measurements 
of both waves with a single video camera. In all experiments the density of the 
lower layer was p~ = 1.1 grncmp3 and the density of the fresh upper layer was 
p u  = 0.9982 g m ~ m - ~ .  

Figure 12 shows the collision between large-amplitude waves of equal amplitude. 
The behaviour was similar to a reflection from a solid vertical boundary, with the 
fluid trapped within each wave reversing direction and being transported away from 
the collision along the path by which it approached. Some fluid was ejected as the 
waves collapsed away from each other, causing the outgoing waves to be smaller 
than the ingoing waves and producing small secondary waves. After reflecting off the 
paddle apparatus, the two waves returned to the point of the original collision which, 
in agreement with the direct measurements, indicates that both outgoing waves had 
the same amplitude. 

As shown in figure 13, for waves of different amplitudes this behaviour was 
modified by the exchange of fluid from the larger incident wave to the smaller 
incident wave such that the leftward and rightward propagating waves had the same 
amplitudes before and after the collision. This transfer of fluid was required to satisfy 
conservation of momentum. Furthermore, although the trapped fluid was principally 
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FIGURE 11. (a) The trajectory followed by the X = 80 cm wave during reflection. Extrapolating 
straight lines fitted to the incident and reflected trajectories indicates that the wave suffered a 
negative spatial phase shift. (6) Spatial phase shift us. incident wave amplitude. The estimation 
procedure produces large errors, but evidence for phase shifts is convincing with the point estimates 
indicating that all waves suffered similar delays. 

reflected during head-on collisions, the waves themselves behaved like solitons in 
preserving their identity while they passed through each other. 

6. Summary and conclusions 
An investigation of deep-water internal solitary waves has been presented. Small 

waves carried energy and momentum, whereas sufficiently large waves also entrained, 
mixed and then ejected fluid. The small-amplitude waves are well described by 
inviscid weakly nonlinear theory (Benjamin 1967; Davis & Acrivos 1967) but, as 
expected, the theory fails to predict the behaviour of the large-amplitude waves. 
However, numerical solutions for inviscid waves (Tung et al. 1982) are consistent 
with the observed behaviour of large-amplitude waves, and, with these solutions 
being invalid for flows having closed streamlines, this implies that such waves can be 
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FIGURE 12. Head-on collision between two waves of equal amplitudes. The behaviour was similar 
to a reflection, with the fluid trapped within each wave reversing direction and being transported 
away from the collision along the path by which it approached. 

accounted for without regard to the detailed nature of the trapped flow and viscous 
effects. 

Several avenues for future work exist. First, a numerical investigation is required 
to determine if there is a critical amplitude above which waves are unstable. Indeed, 
whilst the finding that wave steepness is constant at large amplitudes suggests that 
waves of unbounded amplitude may exist, very large waves might be susceptible to 
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FIGURE 13. Head-on collision between two waves of different amplitudes. Whilst most of the 
trapped fluid was reflected, a small quantity of fluid was exchanged from the larger incident wave 
to the smaller ingoing wave such that the leftward and rightward propagating waves had the same 
amplitudes before and after the collision. 

shear instabilities or bifurcate to another, perhaps asymmetric, state. Second, the 
origin and influence of the mode-1 waves that followed each mode-2 wave remains 
to be determined after a crude comparison of the measured attenuation of the main 
wave with that expected from wave radiation failed to resolve the issue. Third, the 
role of turbulent mixing and wave radiation in the damping of large-amplitude waves 
deserves further experimental and theoretical consideration. Fourth, an analytical 
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model of the large-amplitude waves awaits development, and the relationship of these 
waves to vortex pairs should be clarified. Although these waves are a highly nonlinear 
phenomenon, the finding that both their wavespeed and wavelength increase linearly 
with increasing amplitude suggests an underlying simplicity, and provides a starting 
point for such an investigation. Finally, the observation that large-amplitude waves 
suffer a backward shift during interactions requires experimental and theoretical 
verification. 

To conclude, the authors hope that this investigation will provide a basis on which 
to interpret field observations of deep-water waves. Indeed, Clarke, Smith & Reid's 
(1981) finding that weakly nonlinear theory predicts the wavespeed but underestimates 
the wavelength of morning glory roll clouds is explained by the observation that once 
waves develop a recirculating region their wavelength increases, rather than decreases, 
with increasing amplitude. However, the wave attenuation results should be applied 
with caution because common dissipation mechanisms such as vertical wave radiation 
were not present in the experiments. 

This work was done while A.P.S. was a PhD student and M.J. a vacation scholar 
in the Geophysical Fluid Dynamics Group, Research School of Earth Sciences, The 
Australian National University. The manuscript was prepared while A.P.S. was at the 
School of Oceanography, University of Washington supported by the UCAR Visiting 
Scientist Program. The authors thank Drs Ross Griffiths and Doug Christie for many 
helpful comments during the preparation of this paper, and Matthew Stocks for 
making his experimental results available. We also appreciate the technical assistance 
provided by Derek Corrigan and Ross Wylde-Browne. Two anonymous referees 
assisted in the interpretation of the amplitude attenuation results. 
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